Road manhole covers are crucial components of urban infrastructure; however, inadequate maintenance or poor marking can pose safety risks to vehicular traffic. This paper presents a method for detecting road manhole covers using a stereo depth camera and the MGB-YOLO model. We curated a robust image dataset and performed image enhancement and annotation. The MGB-YOLO model was developed by optimizing the YOLOv5s network with MobileNet-V3, Global Attention Mechanism (GAM), and BottleneckCSP, striking a balance between detection accuracy and model efficiency. Our method achieved an impressive accuracy of 96.6%, surpassing the performance of Faster RCNN, SSD, YOLOv5s, YOLOv7 and YOLOv8s models with an increased mean average precision (mAP) of 15.6%, 6.9%, 0.7%, 0.5% and 0.5%, respectively. Additionally, we have reduced the model's size and the number of parameters, making it highly suitable for deployment on in-vehicle embedded devices. These results underscore the effectiveness of our approach in detecting road manhole covers, offering valuable insights for vehicle-based manhole cover detection and contributing to the reduction of accidents and enhanced driving comfort.
Real-time detection of road manhole covers with a deep learning model.
阅读:6
作者:Pang Dangfeng, Guan Zhiwei, Luo Tao, Su Wei, Dou Ruzhen
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2023 | 起止号: | 2023 Sep 30; 13(1):16479 |
| doi: | 10.1038/s41598-023-43173-z | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
