Fast temperature measurement following single laser-induced cavitation inside a microfluidic gap.

阅读:6
作者:Quinto-Su Pedro A, Suzuki Madoka, Ohl Claus-Dieter
Single transient laser-induced microbubbles have been used in microfluidic chips for fast actuation of the liquid (pumping and mixing), to interact with biological materials (selective cell destruction, membrane permeabilization and rheology) and more recenty for medical diagnosis. However, the expected heating following the collapse of a microbubble (maximum radius ~ 10-35†µm) has not been measured due to insufficient temporal resolution. Here, we extend the limits of non-invasive fluorescence thermometry using high speed video recording at up to 90,000 frames per second to measure the evolution of the spatial temperature profile imaged with a fluorescence microscope. We found that the temperature rises are moderate (< 12.8°C), localized (< 15†µm) and short lived (< 1.3†ms). However, there are significant differences between experiments done in a microfluidic gap and a container unbounded at the top, which are explained by jetting and bubble migration. The results allow to safe-guard some of the current applications involving laser pulses and photothermal bubbles interacting with biological material in different liquid environments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。