Guanine-rich nucleic acid sequences challenge the replication, transcription, and translation machinery by spontaneously folding into G-quadruplexes, the unfolding of which requires forces greater than most polymerases can exert(1,2). Eukaryotic cells contain numerous helicases that can unfold G-quadruplexes (3) . The molecular basis of the recognition and unfolding of G-quadruplexes by helicases remains poorly understood. DHX36 (also known as RHAU and G4R1), a member of the DEAH/RHA family of helicases, binds both DNA and RNA G-quadruplexes with extremely high affinity(4-6), is consistently found bound to G-quadruplexes in cells(7,8), and is a major source of G-quadruplex unfolding activity in HeLa cell lysates (6) . DHX36 is a multi-functional helicase that has been implicated in G-quadruplex-mediated transcriptional and post-transcriptional regulation, and is essential for heart development, haematopoiesis, and embryogenesis in mice(9-12). Here we report the co-crystal structure of bovine DHX36 bound to a DNA with a G-quadruplex and a 3' single-stranded DNA segment. We show that the N-terminal DHX36-specific motif folds into a DNA-binding-induced α-helix that, together with the OB-fold-like subdomain, selectively binds parallel G-quadruplexes. Comparison with unliganded and ATP-analogue-bound DHX36 structures, together with single-molecule fluorescence resonance energy transfer (FRET) analysis, suggests that G-quadruplex binding alone induces rearrangements of the helicase core; by pulling on the single-stranded DNA tail, these rearrangements drive G-quadruplex unfolding one residue at a time.
Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36.
阅读:4
作者:Chen Michael C, Tippana Ramreddy, Demeshkina Natalia A, Murat Pierre, Balasubramanian Shankar, Myong Sua, Ferré-D'Amaré Adrian R
| 期刊: | Nature | 影响因子: | 48.500 |
| 时间: | 2018 | 起止号: | 2018 Jun;558(7710):465-469 |
| doi: | 10.1038/s41586-018-0209-9 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
