Understanding the binding affinity of noscapines with protease of SARS-CoV-2 for COVID-19 using MD simulations at different temperatures.

阅读:4
作者:Kumar Durgesh, Kumari Kamlesh, Jayaraj Abhilash, Kumar Vinod, Kumar Ramappa Venkatesh, Dass Sujata K, Chandra Ramesh, Singh Prashant
The current outbreak of a novel coronavirus, named as SARS-CoV-2 causing COVID-19 occurred in 2019, is in dire need of finding potential therapeutic agents. Recently, ongoing viral epidemic due to coronavirus (SARS-CoV-2) primarily affected mainland China that now threatened to spread to populations in most countries of the world. In spite of this, there is currently no antiviral drug/ vaccine available against coronavirus infection, COVID-19. In the present study, computer-aided drug design-based screening to find out promising inhibitors against the coronavirus (SARS-CoV-2) leads to infection, COVID-19. The lead therapeutic molecule was investigated through docking and molecular dynamics simulations. In this, binding affinity of noscapines(23B)-protease of SARS-CoV-2 complex was evaluated through MD simulations at different temperatures. Our research group has established that noscapine is a chemotherapeutic agent for the treatment of drug resistant cancers; however, noscapine was also being used as anti-malarial, anti-stroke and cough-suppressant. This study suggests for the first time that noscapine exerts its antiviral effects by inhibiting viral protein synthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。