Solvent polarity effects on the FTIR spectrum, and thermodynamic and electronic properties of metronidazole and its binding with antibacterial drugs: a DFT and molecular docking study.

阅读:4
作者:Golj Desta Regassa, Dinka Megersa Olumana, Sherefedin Umer, Belay Abebe, Gelanu Dereje, Megersa Gadisa Deme
Metronidazole is widely used as an antimicrobial, particularly effective against anaerobic bacteria and protozoan infections. This study investigates solvent polarity effects on the Fourier transform infrared (FTIR) spectrum, and thermodynamic and electronic properties of metronidazole via semiempirical, Hartree-Fock (HF), and density functional theory (DFT) methods. Its binding with antibacterial drugs was also investigated via molecular docking. The results showed that in water, the dipole moment and polarizability increased, indicating enhanced solubility and reactivity. Solvent-induced changes in bond lengths and angles are important for understanding the behavior of metronidazole in biological systems. FTIR reveals changes in molecular interactions due to solvation effects, especially hydrogen bonding in water. Thermodynamic calculations further revealed that polar solvents increase the energy and dipole moment, enhancing the reactivity of the molecule. Frontier molecular orbital (FMO) analysis indicated that the molecules are more stable in polar environments, while UV-Vis spectral shifts showed that the solvent affects the electronic properties. Molecular docking studies with antibacterial proteins revealed that metronidazole binds strongly to proteins, with the metronidazole-4kov complex showing the highest binding affinity. Molecular docking of metronidazole with secnidazole, tizoxanide, and caffeine enhances the binding affinities, suggesting synergistic effects. In conclusion, this study emphasizes the importance of solvent polarity for optimizing the antibacterial properties of metronidazole and its molecular docking with other drugs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。