Network synchronization landscape reveals compensatory structures, quantization, and the positive effect of negative interactions.

阅读:3
作者:Nishikawa Takashi, Motter Adilson E
Synchronization, in which individual dynamical units keep in pace with each other in a decentralized fashion, depends both on the dynamical units and on the properties of the interaction network. Yet, the role played by the network has resisted comprehensive characterization within the prevailing paradigm that interactions facilitating pairwise synchronization also facilitate collective synchronization. Here we challenge this paradigm and show that networks with best complete synchronization, least coupling cost, and maximum dynamical robustness, have arbitrary complexity but quantized total interaction strength, which constrains the allowed number of connections. It stems from this characterization that negative interactions as well as link removals can be used to systematically improve and optimize synchronization properties in both directed and undirected networks. These results extend the recently discovered compensatory perturbations in metabolic networks to the realm of oscillator networks and demonstrate why "less can be more" in network synchronization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。