Bead-based assay is widely used in many bioanalytical applications involving the attachment of proteins and other biomolecules to the surface. For further understanding of the formation of a sphere-biomolecule complex and easily optimizing the use of spheres in targeted biological applications, it is necessary to know the kinetics of the binding reaction at sphere/solution interface. In our presented work, a simple fluorescence analysis method was employed to measure the kinetics for the binding of biotin to sphere surface-bound FITC-SA, based on the fact that the fluorescence intensity of FITC was proportionally enhanced by increasing the binding amount of biotin. By monitoring the time-dependent changes of FITC fluorescence, it was found that the binding rate constant of biotin to sphere surface-immobilized FITC-SA was much smaller than that of biotin to freely diffusing FITC-SA. This can be attributed to the decreased encounter frequency of the reaction pair, restricted motion of the attached biomolecule, and the weakened steric accessibility of the binding site. These factors would become more obvious when increasing the size of the sphere upon which the FITC-SA was immobilized. Additionally, the effect of nanoparticles on the diffusion-controlled bimolecular binding reaction was more evident than that on the chemical recognition-controlled binding reaction.
Recognition kinetics of biomolecules at the surface of different-sized spheres.
阅读:3
作者:Hu Jun, Wen Cong-Ying, Zhang Zhi-Ling, Xie Min, Xie Hai-Yan, Pang Dai-Wen
| 期刊: | Biophysical Journal | 影响因子: | 3.100 |
| 时间: | 2014 | 起止号: | 2014 Jul 1; 107(1):165-73 |
| doi: | 10.1016/j.bpj.2014.05.005 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
