Experimental and probabilistic model validation of ultrasonic MEMS transceiver for blood glucose sensing.

阅读:5
作者:Tripathy Hara Prasada, Pattanaik Priyabrata, Mishra Dilip Kumar, Kamilla Sushanta Kumar, Holderbaum William
In contrast to traditional laboratory glucose monitoring, recent developments have focused on blood glucose self-monitoring and providing patients with a self-monitoring device. This paper proposes a system based on ultrasound principles for quantifying glucose levels in blood by conducting an in-vitro experiment with goat blood before human blood. The ultrasonic transceiver is powered by a frequency generator that operates at 40 kHz and 1.6 V, and variations in glucose level affect the ultrasonic transceiver readings. The RVM probabilistic model is used to determine the variation in glucose levels in a blood sample. Blood glucose levels are measured simultaneously using a commercial glucose metre for confirmation. The experimental data values proposed are highly correlated with commercial glucose metre readings. The proposed ultrasonic MEMS-based blood glucometer measures a glucose level of [Formula: see text] mg/dl. In the near future, the miniature version of the experimental model may be useful to human society.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。