Surface plasmon field-enhanced fluorescence spectroscopy (SPFS) utilizes the evanescent electromagnetic field of a surface plasmon to excite chromophors in close proximity to the surface. While conventional surface plasmon resonance spectroscopy allows the observation of surface reactions by means of refractive index changes, SPFS additionally provides a channel for the read-out of fluorescence changes. Thus, the detection limit for low mass compounds, whose adsorption is only accompanied by small refractive index changes, can be substantially improved by fluorescent labeling. In this study, we present the first example that utilizes SPFS to follow the dynamics of an enzymatic reaction. The elongation of surface-tethered DNA has been observed by the incorporation of Cy5-labeled nucleotides into the nascent strand by the action of DNA polymerase I (Klenow fragment). The technique offers a rapid way to determine the binding constant and the catalytic activity of a DNA processing enzyme, here exemplified by the Klenow fragment. Furthermore, the effect of mispaired bases in the primer/template duplex and the influence of different label densities have been studied. The resulting sensitivity for nucleotide incorporation, being in the femtomolar regime, combined with the specificity of the enzyme for fully complementary DNA duplexes suggest the application of this assay as a powerful tool for DNA detection.
Surface plasmon field-enhanced fluorescence spectroscopy studies of primer extension reactions.
阅读:5
作者:Stengel Gudrun, Knoll Wolfgang
| 期刊: | Nucleic Acids Research | 影响因子: | 13.100 |
| 时间: | 2005 | 起止号: | 2005 Apr 22; 33(7):e69 |
| doi: | 10.1093/nar/gni067 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
