Pyrolysis Kinetic Behaviour of Glass Fibre-Reinforced Epoxy Resin Composites Using Linear and Nonlinear Isoconversional Methods.

阅读:5
作者:Yousef Samy, Eimontas Justas, StriÅ«gas Nerijus, Praspaliauskas Marius, Abdelnaby Mohammed Ali
Due to the increasing demand for glass fibre-reinforced epoxy resin composites (GFRC), huge amounts of GFRC waste are produced annually in different sizes and shapes, which may affect its thermal and chemical decomposition using pyrolysis technology. In this context, this research aims to study the effect of mechanical pre-treatment on the pyrolysis behaviour of GFRC and its pyrolysis kinetic. The experiments were started with the fabrication of GFRC panels using the vacuum-assisted resin transfer method followed by crushing the prepared panels using ball milling, thus preparing the milled GFRC with uniform shape and size. The elemental, proximate, and morphology properties of the panels and milled GFRC were studied. The thermal and chemical decomposition of the milled GFRC was studied using thermogravimetric coupled with Fourier-transform infrared spectroscopy (TG-FTIR) at different heating rates. Meanwhile, the volatile products were examined using TG coupled with gas chromatography-mass spectrometry (GC-MS). The TG-FTIR and TG-GC-MS experiments were performed separately. Linear (Kissinger-Akahira-Sunose (KAS), Flynn-Wall-Ozawa (FWO), and Friedman) and nonlinear (Vyazovkin and Cai) isoconversional methods were used to determine the pyrolysis kinetic of the milled GFRC based on thermogravimetry and differential thermal gravimetry (TG/DTG). In addition, the TG/DTG data of the milled GFRC were fitting using the distributed activation energy model and the independent parallel reactions kinetic model. The TG results showed that GFRC can decompose in three stages, and the main decomposition is located in the range 256-500 °C. On the other hand, aromatic benzene and a C-H bond were the major functional groups in the released volatile components in FTIR spectra, while phenol (27%), phenol,4-(1-methylethyl) (40%), and p-isopropenylphenol (34%) were the major compounds in GC-MS analysis. Whereas, the kinetic results showed that both isoconversional methods can be used to determine activation energies, which were estimated 165 KJ/mol (KAS), 193 KJ/mol (FWO), 180 KJ/mol (Friedman), 177 KJ/mol (Vyazovkin), and 174 KJ/mol (Cai).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。