A Novel Experimental Method and Setup to Quantify Evaporation-Induced Foaming Behavior of Polymer Solutions.

阅读:3
作者:Qiu Xiaoyi, Cui Zhaoqi, Zhao Ming, Jiang Jie, Guo Wenze, Zhao Ling, Xi Zhenhao, Yuan Weikang
This study provides a novel experimental setup and methodology for the quantitative investigation of evaporation-induced foaming behaviors in a polymer/small-molecule solution system (PSMS). In traditional dynamic test methods, it is difficult to precisely describe the evaporation-induced foaming process of a multicomponent solution because the concentration of light components in solution continuously decreases during ebullition, causing undesired changes in foaming behavior. In this study, a precisely controlled condensation reflux module was introduced into the setup to maintain pressure, temperature, and concentration of the PSMS at constant levels during the entire ebullition process, allowing dynamic test methods to quantify the evaporation-induced foamability. With this newly proposed device, experimental data of typical PSMS, polyolefin elastomer (POE)/n-hexane solution system, were obtained and modeled to illustrate the foam growth profile, thereby characterizing the dynamic foaming process based on a logistic growth function. The corresponding dimensionless number Σevap was calculated to evaluate evaporation-induced foam stability by analyzing the foam growth profile under varying pressure, concentration, and energy input levels. Furthermore, given that the PSMS represents a highly non-ideal system, the bubble nucleation rate J was modified in this work by introducing a correction coefficient δ to account for the non-ideal effects of macromolecules present in solutions. Additionally, another correction coefficient λ was incorporated into the Gibbs free energy term to adjust for supersaturation of liquid during nucleation. The experiment's data align well with the modified bubble nucleation rate mechanism proposed herein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。