Development and characterization of a tissue engineered pancreatic substitute based on recombinant intestinal endocrine L-cells.

阅读:4
作者:Bara Heather, Sambanis Athanassios
A tissue engineered pancreatic substitute (TEPS) consisting of insulin-producing cells appropriately designed and encapsulated to support cellular function and prevent interaction with the host may provide physiological blood glucose regulation for the treatment of insulin dependent diabetes (IDD). The performance of agarose-based constructs which contained either a single cell suspension of GLUTag-INS cells, a suspension of pre-aggregated GLUTag-INS spheroids, or GLUTag-INS cells on small intestinal submucosa (SIS), was evaluated in vitro for total cell number, weekly glucose consumption and insulin secretion rates (GCR and ISR), and induced insulin secretion function. The three types of TEPS studied displayed similar number of cells, GCR, and ISR throughout 4 weeks of culture. However, the TEPS, which incorporated SIS as a substrate for the GLUTag-INS cells, was the only type of TEPS tested which was able to retain the induced insulin secretion function of non-encapsulated GLUTag-INS cells. Though improvements in the expression level of GLUTag-INS cells and/or the number of viable cells contained within the TEPS are needed for successful treatment of a murine model of IDD, this study has revealed a potential method for promoting proper cellular function of recombinant L-cells upon incorporation into an implantable three-dimensional TEPS.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。