Systemic inflammation has been implicated in the progression of Alzheimer's disease (AD); however, less is understood about how existing AD pathology contributes to adverse outcomes following acute inflammatory insults. In the present study, our goal was to determine how AD-associated amyloid beta (Aβ) pathology influences the acute neuroinflammatory and behavioral responses to a moderate systemic inflammatory insult. We treated 16-18-month-old female Tg2576 (Tg) mice, which overproduce human Aβ and develop plaques, and age-matched wild-type (WT) littermate mice with an intraperitoneal injection of 0.33 mg/kg lipopolysaccharide (LPS) or saline. Mice were then evaluated over the next 28 h for sickness/depressive-like behaviors (food intake, weight loss, locomotion, and sucrose preference), systemic inflammation (serum amyloid A, SAA), blood-brain barrier (BBB) disruption, astrogliosis (glial fibrillary acidic protein/GFAP), Aβ, and cytokine levels in the brain. We found that LPS caused a larger reduction in body weight in Tg vs. WT mice, but that other behavioral responses to LPS did not differ by genotype. BBB disruption was not apparent in either genotype following LPS. Concentrations of the systemic inflammatory marker, SAA, in the blood and brain were significantly increased with LPS but did not significantly differ by genotype. GFAP was increased in Tg mice vs. WT but was not significantly affected by LPS in either genotype. Finally, LPS-induced increases of eight cytokines (IL-1β, IL-6, IL-12 (p40), IL-10, IL-17A, MIP-1α/CCL3, MIP-1β/CCL4, and RANTES/CCL5) were found to be significantly higher in Tg mice vs. WT. In summary, our data show that Aβ pathology exacerbates the neuroinflammatory response to LPS and identifies cytokines that are selectively regulated by Aβ. The association of worse neuroinflammation with greater weight loss in Tg mice suggests that Aβ pathology could contribute to poor outcomes following a systemic inflammatory insult.
Amyloid Beta Pathology Exacerbates Weight Loss and Brain Cytokine Responses following Low-Dose Lipopolysaccharide in Aged Female Tg2576 Mice.
阅读:6
作者:Knopp Rachel C, Baumann Kristen K, Wilson Miranda L, Banks William A, Erickson Michelle A
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2022 | 起止号: | 2022 Feb 21; 23(4):2377 |
| doi: | 10.3390/ijms23042377 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
