To fully utilize the advances in omics technologies and achieve a more comprehensive understanding of human diseases, novel computational methods are required for integrative analysis of multiple types of omics data. Here, we present a novel multi-omics integrative method named Multi-Omics Graph cOnvolutional NETworks (MOGONET) for biomedical classification. MOGONET jointly explores omics-specific learning and cross-omics correlation learning for effective multi-omics data classification. We demonstrate that MOGONET outperforms other state-of-the-art supervised multi-omics integrative analysis approaches from different biomedical classification applications using mRNA expression data, DNA methylation data, and microRNA expression data. Furthermore, MOGONET can identify important biomarkers from different omics data types related to the investigated biomedical problems.
MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification.
阅读:6
作者:Wang Tongxin, Shao Wei, Huang Zhi, Tang Haixu, Zhang Jie, Ding Zhengming, Huang Kun
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2021 | 起止号: | 2021 Jun 8; 12(1):3445 |
| doi: | 10.1038/s41467-021-23774-w | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
