Automatic detection of standing dead trees based on improved YOLOv7 from airborne remote sensing imagery.

阅读:4
作者:Zhou Hongwei, Wu Shangxin, Xu Zihan, Sun Hong
Detecting and localizing standing dead trees (SDTs) is crucial for effective forest management and conservation. Due to challenges posed by mountainous terrain and road conditions, conducting a swift and comprehensive survey of SDTs through traditional manual inventory methods is considerably difficult. In recent years, advancements in deep learning and remote sensing technology have facilitated real-time and efficient detection of dead trees. Nevertheless, challenges persist in identifying individual dead trees in airborne remote sensing images, attributed to factors such as small target size, mutual occlusion and complex backgrounds. These aspects collectively contribute to the increased difficulty of detecting dead trees at a single-tree scale. To address this issue, the paper introduces an improved You Only Look Once version 7 (YOLOv7) model that incorporates the Simple Parameter-Free Attention Module (SimAM), an unparameterized attention mechanism. This improvement aims to enhance the network's feature extraction capabilities and increase the model's sensitivity to small target dead trees. To validate the superiority of SimAM_YOLOv7, we compared it with four widely adopted attention mechanisms. Additionally, a method to enhance model robustness is presented, involving the replacement of the Complete Intersection over Union (CIoU) loss in the original YOLOv7 model with the Wise-IoU (WIoU) loss function. Following these, we evaluated detection accuracy using a self-developed dataset of SDTs in forests. The results indicate that the improved YOLOv7 model can effectively identify dead trees in airborne remote sensing images, achieving precision, recall and mAP@0.5 values of 94.31%, 93.13% and 98.03%, respectively. These values are 3.67%, 2.28% and 1.56% higher than those of the original YOLOv7 model. This improvement model provides a convenient solution for forest management.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。