An energy decomposition analysis (EDA) for single chemical bonds is presented within the framework of Kohn-Sham density functional theory based on spin projection equations that are exact within wave function theory. Chemical bond energies can then be understood in terms of stabilization caused by spin-coupling augmented by dispersion, polarization, and charge transfer in competition with destabilizing Pauli repulsions. The EDA reveals distinguishing features of chemical bonds ranging across nonpolar, polar, ionic, and charge-shift bonds. The effect of electron correlation is assessed by comparison with Hartree-Fock results. Substituent effects are illustrated by comparing the C-C bond in ethane against that in bis(diamantane), and dispersion stabilization in the latter is quantified. Finally, three metal-metal bonds in experimentally characterized compounds are examined: a [Formula: see text]-[Formula: see text] dimer, the [Formula: see text]-[Formula: see text] bond in dizincocene, and the Mn-Mn bond in dimanganese decacarbonyl.
Energy decomposition analysis of single bonds within Kohn-Sham density functional theory.
阅读:8
作者:Levine Daniel S, Head-Gordon Martin
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2017 | 起止号: | 2017 Nov 28; 114(48):12649-12656 |
| doi: | 10.1073/pnas.1715763114 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
