Analysis across a growing number of single-cell perturbation datasets is hampered by poor data interoperability. To facilitate development and benchmarking of computational methods, we collect a set of 44 publicly available single-cell perturbation-response datasets with molecular readouts, including transcriptomics, proteomics and epigenomics. We apply uniform quality control pipelines and harmonize feature annotations. The resulting information resource, scPerturb, enables development and testing of computational methods, and facilitates comparison and integration across datasets. We describe energy statistics (E-statistics) for quantification of perturbation effects and significance testing, and demonstrate E-distance as a general distance measure between sets of single-cell expression profiles. We illustrate the application of E-statistics for quantifying similarity and efficacy of perturbations. The perturbation-response datasets and E-statistics computation software are publicly available at scperturb.org. This work provides an information resource for researchers working with single-cell perturbation data and recommendations for experimental design, including optimal cell counts and read depth.
scPerturb: harmonized single-cell perturbation data.
阅读:3
作者:Peidli Stefan, Green Tessa D, Shen Ciyue, Gross Torsten, Min Joseph, Garda Samuele, Yuan Bo, Schumacher Linus J, Taylor-King Jake P, Marks Debora S, Luna Augustin, Blüthgen Nils, Sander Chris
| 期刊: | Nature Methods | 影响因子: | 32.100 |
| 时间: | 2024 | 起止号: | 2024 Mar;21(3):531-540 |
| doi: | 10.1038/s41592-023-02144-y | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
