Efficient and scalable scaffolding using optical restriction maps.

阅读:3
作者:Saha Subrata, Rajasekaran Sanguthevar
In the next generation sequencing techniques millions of short reads are produced from a genomic sequence at a single run. The chances of low read coverage to some regions of the sequence are very high. The reads are short and very large in number. Due to erroneous base calling, there could be errors in the reads. As a consequence, sequence assemblers often fail to sequence an entire DNA molecule and instead output a set of overlapping segments that together represent a consensus region of the DNA. This set of overlapping segments are collectively called contigs in the literature. The final step of the sequencing process, called scaffolding, is to assemble the contigs into a correct order. Scaffolding techniques typically exploit additional information such as mate-pairs, pair-ends, or optical restriction maps. In this paper we introduce a series of novel algorithms for scaffolding that exploit optical restriction maps (ORMs). Simulation results show that our algorithms are indeed reliable, scalable, and efficient compared to the best known algorithms in the literature.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。