Developing a three stage coordinated approach to enhance efficiency and reliability of virtual power plants.

阅读:3
作者:Amissah Jeremiah, Abdel-Rahim Omar, Mansour Diaa-Eldin A, Bajaj Mohit, Zaitsev Ievgen, Abdelkader Sobhy
A Virtual Power Plant (VPP) is a centralized energy system that manages, and coordinates distributed energy resources, integrating them into a unified entity. While the physical assets may be dispersed across various locations, the VPP integrates them into a virtual unified entity capable of responding to grid demands and market signals. This paper presents a tri-level hierarchical coordinated operational framework of VPP. Firstly, an Improved Pelican Optimization Algorithm (IPOA) is introduced to optimally schedule Distributed Energy Resources (DERs) within the VPP, resulting in a significant reduction in generation costs. Comparative analysis against conventional algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) demonstrates IPOA's superior performance, achieving an average reduction of 8.5% in generation costs across various case studies. The second stage focuses on securing the optimized generation data from rising cyber threats, employing the capabilities of machine learning, preferably, a convolutional autoencoder to learn the normal patterns of the optimized data to detect deviations from the optimized generation data to prevent suboptimal decisions. The model exhibits exceptional performance in detecting manipulated data, with a False Positive Rate (FPR) of 1.92% and a Detection Accuracy (DA) of 98.06%, outperforming traditional detection techniques. Lastly, the paper delves into the dynamic nature of the day ahead market that the VPP participates in. In responding to the grid by selling its optimized generated power via the day-ahead market, the VPP employs the Prophet model, another machine learning technique to forecast the spot market price for the day-ahead to mitigate the adverse effects of price volatility. By utilizing Prophet forecasts, the VPP achieves an average revenue increase of 15.3% compared to scenarios without price prediction, emphasizing the critical role of predictive analytics in optimizing economic gains. This tri-level coordinated approach adopted addresses key challenges in the energy sector, facilitating progress towards achieving universal access to clean and affordable energy.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。