Development and Characterization of Lecithin-based Self-assembling Mixed Polymeric Micellar (saMPMs) Drug Delivery Systems for Curcumin.

阅读:4
作者:Chen Ling-Chun, Chen Yin-Chen, Su Chia-Yu, Wong Wan-Ping, Sheu Ming-Thau, Ho Hsiu-O
Self-assembling mixed polymeric micelles (saMPMs) were developed for overcoming major obstacles of poor bioavailability (BA) associated with curcumin delivery. Lecithin added was functioned to enlarge the hydrophobic core of MPMs providing greater solubilization capacity. Amphiphilic polymers (sodium deoxycholate [NaDOC], TPGS, CREMOPHOR, or a PLURONIC series) were examined for potentially self-assembling to form MPMs (saMPMs) with the addition of lecithin. Particle size, size distribution, encapsulation efficacy (E.E.), and drug loading (D.L.) of the mixed micelles were optimally studied for their influences on the physical stability and release of encapsulated drugs. Overall, curcumin:lecithin:NaDOC and curcumin:lecithin:PLURONIC P123 in ratios of 2:1:5 and 5:2:20, respectively, were optimally obtained with a particle size of < 200 nm, an E.E. of >80%, and a D.L. of >10%. The formulated system efficiently stabilized curcumin in phosphate-buffered saline (PBS) at room temperature or 4 °C and in fetal bovine serum or PBS at 37 °C and delayed the in vitro curcumin release. In vivo results further demonstrated that the slow release of curcumin from micelles and prolonged duration increased the curcumin BA followed oral and intravenous administrations in rats. Thus, lecithin-based saMPMs represent an effective curcumin delivery system, and enhancing BA of curcumin can enable its wide applications for treating human disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。