Nowadays, the availability of genotyped trios (sire-dam-offspring) in the livestock industry enables the implementation of the transmission ratio distortion (TRD) approach to discover deleterious alleles in the genome. Various biological mechanisms at different stages of the reproductive cycle such as gametogenesis, embryo development and postnatal viability can induce signals of TRD (i.e., deviation from Mendelian inheritance expectations). In this study, TRD was evaluated using both SNP-by-SNP and sliding windows of 2-, 4-, 7-, 10- and 20-SNP across 92,942 autosomal SNPs for 258,140 genotyped Angus cattle including 7,486 sires, 72,688 dams and 205,966 offspring. Transmission ratio distortion was characterized using allelic (specific- and unspecific-parent TRD) and genotypic parameterizations (additive- and dominance-TRD). Across the Angus autosomal chromosomes, 851 regions were clearly found with decisive evidence for TRD. Among these findings, 19 haplotypes with recessive patterns (potential lethality for homozygote individuals) and 52 regions with allelic patterns exhibiting complete or quasi-complete absence for homozygous individuals in addition to under-representation (potentially reduced viability) of the carrier (heterozygous) offspring were found. In addition, 64 (12) and 20 (4) regions showed significant influence on the trait heifer pregnancy at p-valueâ<â0.05 (after chromosome-wise false discovery rate) and 0.01, respectively, reducing the pregnancy rate up to 15%, thus, supporting the biological importance of TRD phenomenon in reproduction.
Distortion of Mendelian segregation across the Angus cattle genome uncovering regions affecting reproduction.
阅读:4
作者:Id-Lahoucine S, Casellas J, Lu D, Sargolzaei M, Miller S, Cánovas A
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2023 | 起止号: | 2023 Aug 17; 13(1):13393 |
| doi: | 10.1038/s41598-023-37710-z | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
