In our previous work, we proposed a genomic prediction method combing identical-by-state-based Haseman-Elston regression and best linear prediction with additive variance component only (HEBLP|A herein), the most essential component of genetic variation. Since the dominance effects contribute significantly in heterosis, it is desirable to incorporate the HEBLP with dominance variance component that is expected to enhance the predictive accuracy as we move to the further development: HEBLP|AD, a paralleled implementation of genomic prediction compared with genomic best linear unbiased prediction (GBLUP). The simulation results indicated that when the dominance effects contributed to a large proportion of genetic variation, HEBLP|AD and GBLUP|AD, having similar accuracy, both outperformed HEBLP|A; but when the dominance variation was none or little, HEBLP|A, HEBLP|AD, and GBLUP|AD had similar predictability. The analysis of real data from Arabidopsis thaliana F2 population also demonstrated the latter situation. In summary, HEBLP|AD performed stable whether a trait was controlled by dominance effects or not.
A new genomic prediction method with additive-dominance effects in the least-squares framework.
阅读:4
作者:Liu Hailan, Chen Guo-Bo
| 期刊: | Heredity | 影响因子: | 3.900 |
| 时间: | 2018 | 起止号: | 2018 Aug;121(2):196-204 |
| doi: | 10.1038/s41437-018-0099-5 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
