Restoring hyaluronic acid (HA) content is important for maintaining the function of photo-aged skin. This study aimed to evaluate the passive delivery into skin of HA nanoparticles formed by the polyion complex method. Nanoparticles were prepared by mixing and stirring anionic HA with a cationic polymer, protamine, at the charge ratio 55:45. The permeation of fluorescently-labelled HA nanoparticles (HANP) or free HA through hairless mouse skin was characterized in vitro. HANP or free HA was applied to ultraviolet (UV)-irradiated mice in vivo, and their transepidermal water loss (TEWL) was measured after 4 days. HA that had been delivered into skin was separated and characterized by molecular sieve chromatography. HANP were able to deliver HA into the dermis both in vitro and in vivo, whereas free HA penetrated no further than the stratum corneum. Following HANP application, HA within the skin was present in the form of free HA rather than nanoparticles. When applied in vivo, HANP significantly reduced the TEWL caused by UV irradiation. Thus, although free HA does not penetrate into the skin by passive diffusion, HA can be effectively delivered by nanoparticles. HA is then released from the nanoparticles and can contribute to barrier recovery following UV irradiation.
A new strategy for the passive skin delivery of nanoparticulate, high molecular weight hyaluronic acid prepared by a polyion complex method.
阅读:4
作者:Tokudome Yoshihiro, Komi Tatsuya, Omata Ami, Sekita Marie
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2018 | 起止号: | 2018 Feb 5; 8(1):2336 |
| doi: | 10.1038/s41598-018-20805-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
