Linker-Dependent Variation in the Photophysical Properties of Dinuclear 2-Phenylpyridinato(salicylaldiminato)platinum(II) Complexes Featuring NDI Units.

阅读:15
作者:Kawamorita Soichiro, Matsuoka Tatsuya, Nakamura Kazuki, Ahadito Bijak Riyandi, Naota Takeshi
Through-space charge transfer (TSCT) between spatially adjacent donor and acceptor units has garnered considerable attention as a promising design principle for optoelectronic materials. While TSCT systems incorporating rigid spacers have been extensively studied to enhance through-space interactions, transition metal complexes connected by flexible linkers remain underexplored, despite increasing interest in their potential TSCT behavior. Herein, we report the design and synthesis of a donor-acceptor-donor (D-A-D)-type complex (1), in which a central naphthalenediimide (NDI) electron acceptor is linked to 2-phenylpyridinato(salicylaldiminato)platinum(II) complexes via flexible alkyl linkers. By systematically varying the linker length (n = 3, 4, 5, 6; 1a-d), we achieved precise control over the spatial arrangement between the NDI core and the platinum moieties in solution. Notably, compound 1a (n = 3) adopts an S-shaped conformation in solution, giving rise to a distinct TSCT absorption band. The structural and photophysical properties were thoroughly investigated using single-crystal X-ray diffraction, (1)H NMR, NOESY analysis, and DFT calculations, which collectively support the existence of the folded conformation and associated TSCT behavior. These findings highlight that TSCT can be effectively induced in flexible molecular systems by exploiting intramolecular spatial proximity and non-covalent interactions, thereby offering new avenues for the design of responsive optoelectronic materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。