Thermodynamic bounds on ultrasensitivity in covalent switching.

阅读:3
作者:Owen Jeremy A, Talla Pranay, Biddle John W, Gunawardena Jeremy
Switch-like motifs are among the basic building blocks of biochemical networks. A common motif that can serve as an ultrasensitive switch consists of two enzymes acting antagonistically on a substrate, one making and the other removing a covalent modification. To work as a switch, such covalent modification cycles must be held out of thermodynamic equilibrium by continuous expenditure of energy. Here, we exploit the linear framework for timescale separation to establish tight bounds on the performance of any covalent-modification switch in terms of the chemical potential difference driving the cycle. The bounds apply to arbitrary enzyme mechanisms, not just Michaelis-Menten, with arbitrary rate constants and thereby reflect fundamental physical constraints on covalent switching.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。