Robust Statistical Frontalization of Human and Animal Faces.

阅读:5
作者:Sagonas Christos, Panagakis Yannis, Zafeiriou Stefanos, Pantic Maja
The unconstrained acquisition of facial data in real-world conditions may result in face images with significant pose variations, illumination changes, and occlusions, affecting the performance of facial landmark localization and recognition methods. In this paper, a novel method, robust to pose, illumination variations, and occlusions is proposed for joint face frontalization and landmark localization. Unlike the state-of-the-art methods for landmark localization and pose correction, where large amount of manually annotated images or 3D facial models are required, the proposed method relies on a small set of frontal images only. By observing that the frontal facial image of both humans and animals, is the one having the minimum rank of all different poses, a model which is able to jointly recover the frontalized version of the face as well as the facial landmarks is devised. To this end, a suitable optimization problem is solved, concerning minimization of the nuclear norm (convex surrogate of the rank function) and the matrix ℓ1 norm accounting for occlusions. The proposed method is assessed in frontal view reconstruction of human and animal faces, landmark localization, pose-invariant face recognition, face verification in unconstrained conditions, and video inpainting by conducting experiment on 9 databases. The experimental results demonstrate the effectiveness of the proposed method in comparison to the state-of-the-art methods for the target problems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。