Epigenetic switching with asymmetric bridging interactions.

阅读:3
作者:Skjegstad Lars Erik J, Nickels Jan Fabio, Sneppen Kim, Kirkegaard Julius B
Gene expression states are often stably sustained in cis despite massively disruptive events like DNA replication. This is achieved by on-going enzymatic activity that maintains parts of the DNA in either heterochromatic (packed) or euchromatic (free) states, each of which is stabilized by both positive feedback and bridging interactions between individual nucleosomes. In contrast to condensed matter, however, the dynamics is not only governed by equilibrium binding interactions but is also mediated by enzymes that recognize and act on specific amino acid tails of the nucleosomes. The mechanical result is that some nucleosomes can bind to one another and form tightly packed polymer configurations, whereas others remain unbound and form free, noncompact polymer configurations. Here, we study the consequences of such an asymmetric interaction pattern on the dynamics of epigenetic switching. We develop a 3D polymer model and show that traits associated with epigenetic switching, such as bistability and epigenetic memory, are permitted by such a model. We find, however, that the experimentally observed burst-like nature of some epigenetic switches is difficult to reproduce by this biologically motivated interaction. Instead, the behavior seen in experiments can be explained by introducing partial confinement, which particularly affects the euchromatic regions of the chromosome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。