The cavitation phenomenon was studied in isothermally and non-isothermally crystallized polypropylene and high-density polyethylene. It was found that nano-voids were not present in the crystallized samples, but were formed during their tensile deformation. The process of cavitation was initiated before reaching the yield point. The ellipsoidal voids were initially elongated perpendicularly to the deformation direction, but if the polymer (i.e., high-density polyethylene) was able to deform beyond the yield, then the reorientation of voids into the deformation direction was observed at local strains of 100-200 %. This behavior was similar to that observed previously in the samples crystallized without an exact control of solidification conditions. The calculations of Guinier's radius showed that voids in deformed polypropylene samples were characterized by the gyration radii of 28-50 nm. Smaller voids were observed in polyethylene. The scale of cavitation during deformation, studied on the example of polyethylene, depended on the preceding crystallization process and was most intensive for the specimens crystallized at the highest temperature of 125 °C.
Cavitation during tensile deformation of isothermally crystallized polypropylene and high-density polyethylene.
阅读:3
作者:Pawlak, Andrzej
| 期刊: | Colloid and Polymer Science | 影响因子: | 2.300 |
| 时间: | 2013 | 起止号: | 2013 Apr;291(4):773-787 |
| doi: | 10.1007/s00396-012-2789-5 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
