This study investigates the use of CT-based radiomics for predicting extrahepatic metastasis in hepatocellular carcinoma (HCC) following hepatectomy. We analyzed data from 374 patients from two centers (277 in the training cohort and 97 in an external validation cohort). Radiomic features were extracted from contrast-enhanced CT scans. Key features were identified using the least absolute shrinkage and selection operator (LASSO) to compute radiomics scores (radscore) for model development. A clinical model based on risk factors was also created. We developed a combined model integrating both radscore and clinical variables, constructing nomograms for personalized risk assessment. Model performance was compared via the Delong test, with calibration curves assessing prediction consistency. Decision curve analysis (DCA) was employed to assess the clinical utility and net benefit of the predictive models across different threshold probabilities, thereby evaluating their potential value in guiding clinical decision-making for extrahepatic metastasis. Radscore based on CT was an independent predictor of extrahepatic disease (pâ<â0.05). The combined model showed high predictive performance with an AUC of 87.2% (95% CI: 81.8%-92.6%) in the training group and 86.0% (95% CI: 69.4%-100%) in the validation group. Predictive performance of the combined model significantly outperformed both the radiomics and clinical models (pâ<â0.05). The DCA shows that the combined model has a higher net benefit in predicting extrahepatic metastases of HCC than the clinical model and radiomics model. The combined prediction model, utilizing CT radscore alongside clinical risk factors, effectively forecasts extrahepatic metastasis in HCC patients.
Radiomics-based machine-learning method to predict extrahepatic metastasis in hepatocellular carcinoma after hepatectomy: a multicenter study.
阅读:6
作者:He Ying, Dong Bingzi, Hu Bin, Hao Xiwei, Xia Nan, Yang Chuncheng, Dong Qian, Zhu Chengzhan
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 14; 15(1):29784 |
| doi: | 10.1038/s41598-025-15406-w | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
