Full-length isoform transcriptome of the developing human brain provides further insights into autism

人类大脑发育的全长异构体转录组为自闭症提供了进一步的见解

阅读:6
作者:Kevin K Chau, Pan Zhang, Jorge Urresti, Megha Amar, Akula Bala Pramod, Jiaye Chen, Amy Thomas, Roser Corominas, Guan Ning Lin, Lilia M Iakoucheva

Abstract

Alternative splicing plays an important role in brain development, but its global contribution to human neurodevelopmental diseases (NDDs) requires further investigation. Here we examine the relationships between splicing isoform expression in the brain and de novo loss-of-function mutations from individuals with NDDs. We analyze the full-length isoform transcriptome of the developing human brain and observe differentially expressed isoforms and isoform co-expression modules undetectable by gene-level analyses. These isoforms are enriched in loss-of-function mutations and microexons, are co-expressed with a unique set of partners, and have higher prenatal expression. We experimentally test the effect of splice-site mutations and demonstrate exon skipping in five NDD risk genes, including SCN2A, DYRK1A, and BTRC. Our results suggest that the splice site mutation in BTRC reduces translational efficiency, likely affecting Wnt signaling through impaired degradation of β-catenin. We propose that functional effects of mutations should be investigated at the isoform- rather than gene-level resolution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。