Learning-based inference of longitudinal image changes: Applications in embryo development, wound healing, and aging brain.

阅读:4
作者:Kim Heejong, Karaman Batuhan K, Zhao Qingyu, Wang Alan Q, Sabuncu Mert R
Longitudinal imaging data are routinely acquired for health studies and patient monitoring. A central goal in longitudinal studies is tracking relevant change over time. Traditional methods remove nuisance variation with custom pipelines to focus on significant changes. In this work, we present a machine learning-based method that automatically ignores irrelevant changes and extracts the time-varying signal of interest. Our method, called Learning-based Inference of Longitudinal imAge Changes (LILAC), performs a pairwise comparison of longitudinal images in order to make a temporal difference prediction. LILAC employs a convolutional Siamese architecture to extract feature pairs, followed by subtraction and a bias-free fully connected layer to learn meaningful temporal image differences. We first showcase LILAC's ability to capture key longitudinal changes by simply training it to predict the temporal ordering of images. In our experiments, temporal ordering accuracy exceeded 0.98, and predicted time differences were strongly correlated with actual changes in relevant variables (Pearson Correlation Coefficient r = 0.911 with embryo phase change, and r = 0.875 with time interval in wound healing). Next, we trained LILAC to explicitly predict specific targets, such as the change in clinical scores in patients with mild cognitive impairment. LILAC models achieved over a 40% reduction in root mean square error compared to baseline methods. Our empirical results demonstrate that LILAC effectively localizes and quantifies relevant individual-level changes in longitudinal imaging data, offering valuable insights for studying temporal mechanisms or guiding clinical decisions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。