Nowadays, organosulfur compounds provide new options in the development of full organic ion batteries. However, many drawbacks (such as kinetics limitations during the reversible oxidation of disulfides with cleavage of S-S bond, as well as solubility in non-aqueous electrolytes) make their commercialization difficult. Herein, a new concept for the design of organosulfur compounds with regulated redox properties and limited solubility is proposed. As a proof-of-concept, we designed peri-disulfo-substituted 1,8-naphthalimide derivatives, in which the alkyl chain length and halogen substituents (Cl or Br) at positions 3 and 6 are varied. The compounds were synthesized by an originally developed procedure starting from tetrahalonaphthalic anhydride via nucleophilic substitution at both peri-positions in the respective imide. Using ionic liquid electrolyte, it was found that the new peri-dithiolo-1,8-naphthalimides can participate in n- and p-type redox reactions at about 2.0 V and above 4.0 V vs. Li/Li(+), respectively. The redox potentials are sensitive mainly to whether Cl or Br substituents are available in the molecule architecture, while the alkyl chain length determines the kinetics of the redox reactions. Among all compounds, the chloro-substituted compound with the shorter alkyl chain displays the best kinetics for both low- and high-voltage redox reactions.
Naphthalene Monoimides with Peri-Annulated Disulfide Bridge-Synthesis and Electrochemical Redox Activity.
阅读:3
作者:Mutovska Monika, Simeonova Natali, Stoyanov Stanimir, Zagranyarski Yulian, Stanchovska Silva, Marinova Delyana
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2023 | 起止号: | 2023 Dec 1; 16(23):7471 |
| doi: | 10.3390/ma16237471 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
