In Borrelia burgdorferi, BB0556 was annotated as a conserved hypothetical protein. We herein investigated gene expression and the importance of this protein during infection. Our data support that bb0556 forms an operon with five other genes. A transcriptional start site and the associated Ï(70)-type promoter were identified in the sequences upstream of bb0554, and luciferase reporter assays indicated that this promoter is functional in B. burgdorferi. Furthermore, the sequences upstream of bb0556 contain an internal promoter to drive gene expression. bb0556 expression was affected by various environmental factors such as changes in temperature, pH, and cell density when B. burgdorferi was grown in vitro. Surprisingly, significant differences were observed for bb0556 expression between B. burgdorferi strains B31-A3 and CE162, likely due to the different cis- and trans-acting factors in these strains. Moreover, bb0556 was found to be highly expressed by B. burgdorferi in infected mice tissues, suggesting that this gene plays an important role during animal infection. To test this hypothesis, we generated a bb0556 deletion mutant in a virulent bioluminescent B. burgdorferi strain. The mutant grew normally in the medium and displayed no defect in the resistance to environmental stresses such as reactive oxygen species, reactive nitrogen species, and osmotic stress. However, when the infectivity was compared between the mutant and its parental strain using in vivo bioluminescence imaging as well as analyses of spirochete recovery and bacterial burdens in animal tissues, our data showed that, contrary to the parental strain, the mutant was unable to infect mice. Complementation of bb0556 in cis fully restored the infectious phenotype to wild-type levels. Taken together, our study demonstrates that the hypothetical protein BB0556 is a novel virulence factor essential for B. burgdorferi mammalian infection.
Analysis of bb0556 Expression and Its Role During Borrelia burgdorferi Mammalian Infection.
阅读:5
作者:George Sierra, Waldron Connor, Thompson Christina, Ouyang Zhiming
| 期刊: | Molecular Microbiology | 影响因子: | 2.600 |
| 时间: | 2024 | 起止号: | 2024 Dec;122(6):831-846 |
| doi: | 10.1111/mmi.15319 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
