Feature Point Extraction and Motion Tracking of Cardiac Color Ultrasound under Improved Lucas-Kanade Algorithm.

阅读:4
作者:Zhang Xiaoli, Li Punan, Li Yibing
The purpose of this research is to study the application effect of Lucas-Kanade algorithm in right ventricular color Doppler ultrasound feature point extraction and motion tracking under the condition of scale invariant feature transform (SIFT). This study took the right ventricle as an example to analyze the extraction effect and calculation rate of SIFT algorithm and improved Lucas-Kanade algorithm. It was found that the calculation time before and after noise removal by the SIFT algorithm was 0.49 s and 0.46 s, respectively, and the number of extracted feature points was 703 and 698, respectively. The number of feature points extracted by the SIFT algorithm and the calculation time were significantly better than those of other algorithms (P < 0.01). The mean logarithm of the matching points of the SIFT algorithm for order matching and reverse order matching was 20.54 and 20.46, respectively. The calculation time and the number of feature points for the SIFT speckle tracking method were 1198.85 s and 81, respectively, and those of the optical flow method were 3274.19 s and 80, respectively. The calculation time of the SIFT speckle tracking method was significantly lower than that of the optical flow method (P < 0.05), and there was no statistical difference in the number of feature points between the SIFT speckle tracking method and the optical flow method (P > 0.05). In conclusion, the improved Lucas-Kanade algorithm based on SIFT significantly improves the accuracy of feature extraction and motion tracking of color Doppler ultrasound, which shows the value of the algorithm in the clinical application of color Doppler ultrasound.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。