Accurately estimating forest aboveground carbon stock (ACS) is essential for achieving carbon neutrality. At present, most non-parametric models still have errors in estimating carbon stock in regions. Given the autocorrelation inherent in spatial interpolation, combining non-parametric models with spatial interpolation offers significant potential. In this study, we combined the random forest (RF) with the ordinary kriging and co-kriging of the mean annual temperature, precipitation, slope, and elevation to establish the random forest residual kriging (RFRK) model. Meanwhile, we also developed the multiple linear regression residual kriging (MLRRK) model and the random forest residual kriging (RFRK) model. Finally, we selected the optimal model for the estimation and mapping of the ACS. The results indicate that: (1) the model achieves an R(2) of 0.871, P of 90.4%, and RMSE of 3.948Â t/hm(2); (2) the RFCK model with mean annual precipitation (RFCKpre) outperforms the one with mean annual temperature (RFCKtem), while the RFOK model exhibits the lowest accuracy; (3) the RFCKpre exponential model has the highest accuracy, with the highest R(2) of 0.63 and RI (0.23), the lowest RMSE of 9.3 and SSR (41,612). These findings suggest that the RFRKpre model has improved the accuracy of estimating the ACS of regional forests.
Mapping forest aboveground carbon stock of combined stratified sampling and RFRK model with mean annual temperature and precipitation.
阅读:4
作者:Peng Min, Xu Mingrui, Zhang Jialong, Qiu Bo, Teng Chenkai, Chen Chaoqing
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 May 20; 15(1):17410 |
| doi: | 10.1038/s41598-025-02338-8 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
