Polymer electrolyte membrane (PEM) fuel cells have the potential to reduce our energy consumption, pollutant emissions, and dependence on fossil fuels. To achieve a wide range of commercial PEMs, many efforts have been made to create novel polymer-based materials that can transport protons under anhydrous conditions. In this study, cross-linked poly(vinyl) alcohol (PVA)/poly(ethylene) glycol (PEG) membranes with varying alumina (Al(2)O(3)) content were synthesized using the solvent solution method. Wide-angle X-ray diffraction (XRD), water uptake, ion exchange capacity (IEC), and proton conductivity were then used to characterize the membranes. XRD results showed that the concentration of Al(2)O(3) affected the degree of crystallinity of the membranes, with 0.7 wt.% Al(2)O(3) providing the lowest crystallinity. Water uptake was discovered to be dependent not only on the Al(2)O(3) group concentration (SSA content) but also on SSA, which influenced the hole volume size in the membranes. The ionic conductivity measurements provided that the samples were increased by SSA to a high value (0.13 S/m) at 0.7 wt.% Al(2)O(3). Furthermore, the ionic conductivity of polymers devoid of SSA tended to increase as the Al(2)O(3) concentration increased. The positron annihilation lifetimes revealed that as the Al(2)O(3) concentration increased, the hole volume content of the polymer without SSA also increased. However, it was densified with SSA for the membrane. According to the findings of the study, PVA/PEG/SSA/0.7 wt.% Al(2)O(3) might be employed as a PEM with high proton conductivity for fuel cell applications.
Effect of Al(2)O(3) on Nanostructure and Ion Transport Properties of PVA/PEG/SSA Polymer Electrolyte Membrane.
阅读:5
作者:Mohamed Hamdy F M, Abdel-Hady Esam E, Abdel-Moneim Mostafa M Y, Bakr Mohamed A M, Soliman Mohamed A M, Shehata Mahmoud G H, Ismail Mahmoud A T
| 期刊: | Polymers | 影响因子: | 4.900 |
| 时间: | 2022 | 起止号: | 2022 Sep 26; 14(19):4029 |
| doi: | 10.3390/polym14194029 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
