BACKGROUND: Biomedical named entity recognition (BioNER) is a fundamental and essential task for biomedical literature mining, which affects the performance of downstream tasks. Most BioNER models rely on domain-specific features or hand-crafted rules, but extracting features from massive data requires much time and human efforts. To solve this, neural network models are used to automatically learn features. Recently, multi-task learning has been applied successfully to neural network models of biomedical literature mining. For BioNER models, using multi-task learning makes use of features from multiple datasets and improves the performance of models. RESULTS: In experiments, we compared our proposed model with other multi-task models and found our model outperformed the others on datasets of gene, protein, disease categories. We also tested the performance of different dataset pairs to find out the best partners of datasets. Besides, we explored and analyzed the influence of different entity types by using sub-datasets. When dataset size was reduced, our model still produced positive results. CONCLUSION: We propose a novel multi-task model for BioNER with the cross-sharing structure to improve the performance of multi-task models. The cross-sharing structure in our model makes use of features from both datasets in the training procedure. Detailed analysis about best partners of datasets and influence between entity categories can provide guidance of choosing proper dataset pairs for multi-task training. Our implementation is available at https://github.com/JogleLew/bioner-cross-sharing .
Multitask learning for biomedical named entity recognition with cross-sharing structure.
阅读:2
作者:Wang Xi, Lyu Jiagao, Dong Li, Xu Ke
| 期刊: | BMC Bioinformatics | 影响因子: | 3.300 |
| 时间: | 2019 | 起止号: | 2019 Aug 16; 20(1):427 |
| doi: | 10.1186/s12859-019-3000-5 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
