The tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone stimulates proliferation of immortalized human pancreatic duct epithelia through beta-adrenergic transactivation of EGF receptors

烟草特异性致癌物4-(甲基亚硝胺基)-1-(3-吡啶基)-1-丁酮通过β-肾上腺素能反式激活EGF受体刺激永生化人胰腺导管上皮细胞增殖。

阅读:2
作者:Minoo D F Askari ,Ming-Sound Tsao, Hildegard M Schuller

Abstract

Purpose: Pancreatic ductal adenocarcinoma is an aggressive smoking-associated human cancer in both men and women. The nicotine-derived 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is thought to contribute to the development of these neoplasms in smokers through genotoxic effects. However, NNK has been recently identified as an agonist for both beta(1)- and beta(2)-adrenergic receptors. Binding of NNK to these receptors stimulates proliferation of pulmonary and pancreatic adenocarcinomas cells in vitro and in hamster models. The goal of this study was to elucidate the NNK effects on the signal transduction pathways downstream of both beta(1)- and beta(2)-adrenergic receptors in immortalized human pancreatic HPDE6-c7 cells. Methods: The HPDE6-c7 cells are developed from normal pancreatic duct epithelial cells which are the putative cells of origin of pancreatic ductal adenocarcinoma. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT) cell proliferation assays, Western blot and cyclic AMP assays were employed to demonstrate the effects of NNK and other beta(1)- and beta(2)-adrenergic agonists and antagonist treatments on these cells. Results: MTT cell proliferation assays demonstrated that NNK and the classic beta-adrenergic agonist, isoproterenol, increased cell proliferation in HPDE6-c7 cells. Western blot and cyclic AMP assays demonstrated that NNK treatments also resulted in: (1) transactivation of the epidermal growth factor receptor, EGFR, (2) an increase in intracellular cyclic AMP accumulation, and (3) phosphorylation of mitogen-activated protein kinase, Erk1/2. The proliferative response to NNK and isoproterenol were inhibited by the use of beta-blockers (propranolol), and the inhibitors of adenylyl cyclase (SQ 22536), EGFR-specific tyrosine kinase (AG 1478) and Erk (PD 98059). Conclusion: These findings suggest that the NNK -mediated beta-adrenergic receptor transactivation of the EGFR and phosphorylation of Erk1/2 in immortalized human pancreatic duct epithelial cells as a novel mechanism might contribute to the development of tobacco-associated pancreatic carcinogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。