One of the most important irreversible oxidative modifications of proteins is carbonylation, the process of introducing a carbonyl group in reaction with reactive oxygen species. Notably, carbonylation increases with the age of cells and is associated with the formation of intracellular protein aggregates and the pathogenesis of age-related disorders such as neurodegenerative diseases and cancer. However, it is still largely unclear how carbonylation affects protein structure, dynamics, and aggregability at the atomic level. Here, we use classical molecular dynamics simulations to study structure and dynamics of the carbonylated headpiece domain of villin, a key actin-organizing protein. We perform an exhaustive set of molecular dynamics simulations of a native villin headpiece together with every possible combination of carbonylated versions of its seven lysine, arginine, and proline residues, quantitatively the most important carbonylable amino acids. Surprisingly, our results suggest that high levels of carbonylation, far above those associated with cell death in vivo, may be required to destabilize and unfold protein structure through the disruption of specific stabilizing elements, such as salt bridges or proline kinks, or tampering with the hydrophobic effect. On the other hand, by using thermodynamic integration and molecular hydrophobicity potential approaches, we quantitatively show that carbonylation of hydrophilic lysine and arginine residues is equivalent to introducing hydrophobic, charge-neutral mutations in their place, and, by comparison with experimental results, we demonstrate that this by itself significantly increases the intrinsic aggregation propensity of both structured, native proteins and their unfolded states. Finally, our results provide a foundation for a novel experimental strategy to study the effects of carbonylation on protein structure, dynamics, and aggregability using site-directed mutagenesis.
Microscopic analysis of protein oxidative damage: effect of carbonylation on structure, dynamics, and aggregability of villin headpiece.
阅读:3
作者:Petrov Drazen, Zagrovic Bojan
| 期刊: | Journal of the American Chemical Society | 影响因子: | 15.600 |
| 时间: | 2011 | 起止号: | 2011 May 11; 133(18):7016-24 |
| doi: | 10.1021/ja110577e | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
