BACKGROUND: By the beginning of December 2020, some vaccines against COVID-19 already presented efficacy and security, which qualify them to be used in mass vaccination campaigns. Thus, setting up strategies of vaccination became crucial to control the COVID-19 pandemic. METHODS: We use daily COVID-19 reports from Chicago and New York City (NYC) from 01-Mar2020 to 28-Nov-2020 to estimate the parameters of an SEIR-like epidemiological model that accounts for different severity levels. To achieve data adherent predictions, we let the model parameters to be time-dependent. The model is used to forecast different vaccination scenarios, where the campaign starts at different dates, from 01-Oct-2020 to 01-Apr-2021. To generate realistic scenarios, disease control strategies are implemented whenever the number of predicted daily hospitalizations reaches a preset threshold. RESULTS: The model reproduces the empirical data with remarkable accuracy. Delaying the vaccination severely affects the mortality, hospitalization, and recovery projections. In Chicago, the disease spread was under control, reducing the mortality increment as the start of the vaccination was postponed. In NYC, the number of cases was increasing, thus, the estimated model predicted a much larger impact, despite the implementation of contention measures. The earlier the vaccination campaign begins, the larger is its potential impact in reducing the COVID-19 cases, as well as in the hospitalizations and deaths. Moreover, the rate at which cases, hospitalizations and deaths increase with the delay in the vaccination beginning strongly depends on the shape of the incidence of infection in each city.
The impact of COVID-19 vaccination delay: A data-driven modeling analysis for Chicago and New York City.
阅读:6
作者:Albani Vinicius V L, Loria Jennifer, Massad Eduardo, Zubelli Jorge P
| 期刊: | Vaccine | 影响因子: | 3.500 |
| 时间: | 2021 | 起止号: | 2021 Oct 1; 39(41):6088-6094 |
| doi: | 10.1016/j.vaccine.2021.08.098 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
