Interweaving Insights: High-Order Feature Interaction for Fine-Grained Visual Recognition.

阅读:5
作者:Sikdar Arindam, Liu Yonghuai, Kedarisetty Siddhardha, Zhao Yitian, Ahmed Amr, Behera Ardhendu
This paper presents a novel approach for Fine-Grained Visual Classification (FGVC) by exploring Graph Neural Networks (GNNs) to facilitate high-order feature interactions, with a specific focus on constructing both inter- and intra-region graphs. Unlike previous FGVC techniques that often isolate global and local features, our method combines both features seamlessly during learning via graphs. Inter-region graphs capture long-range dependencies to recognize global patterns, while intra-region graphs delve into finer details within specific regions of an object by exploring high-dimensional convolutional features. A key innovation is the use of shared GNNs with an attention mechanism coupled with the Approximate Personalized Propagation of Neural Predictions (APPNP) message-passing algorithm, enhancing information propagation efficiency for better discriminability and simplifying the model architecture for computational efficiency. Additionally, the introduction of residual connections improves performance and training stability. Comprehensive experiments showcase state-of-the-art results on benchmark FGVC datasets, affirming the efficacy of our approach. This work underscores the potential of GNN in modeling high-level feature interactions, distinguishing it from previous FGVC methods that typically focus on singular aspects of feature representation. Our source code is available at https://github.com/Arindam-1991/I2-HOFI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。