Quantifying abnormal alveolar microstructure in cystic fibrosis lung disease via hyperpolarized (129)Xe diffusion MRI.

阅读:4
作者:Bdaiwi Abdullah S, Svoboda Alexandra M, Murdock Kyle E, Hendricks Alexandra, Hossain Md M, Kramer Elizabeth L, Brewington John J, Willmering Matthew M, Woods Jason C, Walkup Laura L, Cleveland Zackary I
RATIONALE: Cystic Fibrosis (CF) progresses through recurrent infection and inflammation, causing permanent lung function loss and airway remodeling. CT scans reveal abnormally low-density lung parenchyma in CF, but its microstructural nature remains insufficiently explored due to clinical CT limitations. To this end, diffusion-weighted (129)Xe MRI is a non-invasive and validated measure of lung microstructure. In this work, we investigate microstructural changes in people with CF (pwCF) relative to age-matched, healthy subjects using comprehensive imaging and analysis involving pulmonary-function tests (PFTs), and (129)Xe MRI. METHODS: 38 healthy subjects (age 6-40; 17.2 ± 9.5 years) and 39 pwCF (age 6-40; 15.6 ± 8.0 years) underwent (129)Xe-diffusion MRI and PFTs. The distribution of diffusion measurements (i.e., apparent diffusion coefficients (ADC) and morphometric parameters) was assessed via linear binning (LB). The resulting volume percentages of bins were compared between controls and pwCF. Mean ADC and morphometric parameters were also correlated with PFTs. RESULTS: Mean whole-lung ADC correlated significantly with age (P < 0.001) for both controls and CF, and with PFTs (P < 0.05) specifically for pwCF. Although there was no significant difference in mean ADC between controls and pwCF (P = 0.334), age-adjusted LB indicated significant voxel-level diffusion (i.e., ADC and morphometric parameters) differences in pwCF compared to controls (P < 0.05). CONCLUSIONS: (129)Xe diffusion MRI revealed microstructural abnormalities in CF lung disease. Smaller microstructural size may reflect compression from overall higher lung density due to interstitial inflammation, fibrosis, or other pathological changes. While elevated microstructural size may indicate emphysema-like remodeling due to chronic inflammation and infection.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。