Enantioselective synthesis, characterization, molecular docking simulation and ADMET profiling of α-alkylated carbonyl compounds as antimicrobial agents.

阅读:3
作者:Noser Ahmed A, Ezzat Mariam, Mahmoud Shimaa G, Selim Adel I, Salem Maha M
All living organisms produce only one enantiomer, so we found that all natural compounds are presented in enantiomerically pure form. Asymmetric synthesis is highly spread in medicinal chemistry because enantiomerically pure drugs are highly applicable. This study initially demonstrated the feasibility of a good idea for the asymmetric synthesis of α-alkylated carbonyl compounds with high enantiomeric purity ranging from 91 to 94% using different quinazolinone derivatives. The structure of all compounds was confirmed via elemental analysis and different spectroscopic data and the enantioselectivity was determined via HPLC using silica gel column. The synthesized compounds' mode of action was investigated using molecular docking against the outer membrane protein A (OMPA) and exo-1,3-beta-glucanase, with interpreting their pharmacokinetics aspects. The results of the antimicrobial effectiveness of these compounds revealed that compound 6a has a broad biocidal activity and this in-vitro study was in line with the in-silico results. Overall, the formulated compound 6a can be employed as antimicrobial agent without any toxicity with high bioavailability in medical applications.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。