The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa.

阅读:3
作者:Suzuki Shiro, Li Laigeng, Sun Ying-Hsuan, Chiang Vincent L
Wood from forest trees modified for more cellulose or hemicelluloses could be a major feedstock for fuel ethanol. Xylan and glucomannan are the two major hemicelluloses in wood of angiosperms. However, little is known about the genes and gene products involved in the synthesis of these wood polysaccharides. Using Populus trichocarpa as a model angiosperm tree, we report here a systematic analysis in various tissues of the absolute transcript copy numbers of cellulose synthase superfamily genes, the cellulose synthase (CesA) and the hemicellulose-related cellulose synthase-like (Csl) genes. Candidate Csl genes were characterized for biochemical functions in Drosophila Schneider 2 (S2) cells. Of the 48 identified members, 37 were found expressed in various tissues. Seven CesA genes are xylem specific, suggesting gene networks for the synthesis of wood cellulose. Four Csl genes are xylem specific, three of which belong to the CslA subfamily. The more xylem-specific CslA subfamily is represented by three types of members: PtCslA1, PtCslA3, and PtCslA5. They share high sequence homology, but their recombinant proteins produced by the S2 cells exhibited distinct substrate specificity. PtCslA5 had no catalytic activity with the substrates for xylan or glucomannan. PtCslA1 and PtCslA3 encoded mannan synthases, but PtCslA1 further encoded a glucomannan synthase for the synthesis of (1-->4)-beta-D-glucomannan. The expression of PtCslA1 is most highly xylem specific, suggesting a key role for it in the synthesis of wood glucomannan. The results may help guide further studies to learn about the regulation of cellulose and hemicellulose synthesis in wood.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。