BACKGROUND & AIMS: Liver-specific inactivation of carcinoembryonic antigen-related cell adhesion molecule 1 causes hyperinsulinemia and insulin resistance, which result from impaired insulin clearance, in liver-specific S503A carcinoembryonic antigen-related cell adhesion molecule 1 mutant mice (L-SACC1). These mice also develop steatosis. Because hepatic fat accumulation precedes hepatitis, lipid peroxidation, and apoptosis in the pathogenesis of nonalcoholic steatohepatitis (NASH), we investigated whether a high-fat diet, by causing inflammation, is sufficient to induce hepatitis and other features of NASH in L-SACC1 mice. METHODS: L-SACC1 and wild-type mice were placed on a high-fat diet for 3 months, then several biochemical and histologic analyses were performed to investigate the NASH phenotype. RESULTS: A high-fat diet caused hepatic macrosteatosis and hepatitis, characterized by increased hepatic tumor necrosis factor alpha levels and activation of the NF-kappaB pathway in L-SACC1 but not in wild-type mice. The high-fat diet also induced necrosis and apoptosis in the livers of the L-SACC1 mice. Insulin resistance in L-SACC1 fed a high-fat diet increased the hepatic procollagen protein level, suggesting a role in the development of fibrosis. CONCLUSIONS: A high-fat diet induces key features of human NASH in insulin-resistant L-SACC1 mice, validating this model as a tool to study the molecular mechanisms of NASH.
Development of nonalcoholic steatohepatitis in insulin-resistant liver-specific S503A carcinoembryonic antigen-related cell adhesion molecule 1 mutant mice.
阅读:8
作者:Lee Sang Jun, Heinrich Garrett, Fedorova Larisa, Al-Share Qusai Y, Ledford Kelly J, Fernstrom Mats A, McInerney Marcia F, Erickson Sandra K, Gatto-Weis Cara, Najjar Sonia M
| 期刊: | Gastroenterology | 影响因子: | 25.100 |
| 时间: | 2008 | 起止号: | 2008 Dec;135(6):2084-95 |
| doi: | 10.1053/j.gastro.2008.08.007 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
