PURPOSE: Although gene transfer with retroviral vectors has shown distinct clinical success in defined settings, efficient genetic manipulation of hematopoietic progenitor cells remains a challenge. To address this issue we have evaluated different transduction protocols and retroviral constructs in the non-obese diabetes (NOD)/severe combined immunodeficiency disease (SCID) xenograft model. METHODS: An extended transduction protocol requiring 144 h of in vitro manipulation was compared to a more conventional protocol requiring 96 h only. RESULT: While pretransplantation analysis of cells transduced with a retroviral vector, expressing the enhanced green fluorescent protein (EGFP) marker gene, demonstrated significantly higher overall transduction rates for the extended protocol (33.6 +/- 2.3 vs. 22.1 +/- 3.8%), EGFP expression in CD34+ cells before transplantation (4.0 +/- 0.9 vs. 11.6 +/- 2.5%), engraftment of human cells in NOD/SCID bone marrow 4 weeks after transplantation (4.5 +/- 1.7 vs. 36.5 +/- 9.4%) and EGFP expression in these cells (0 +/- 0 vs. 11.3 +/- 2.8%) were significantly impaired. When the 96 h protocol was used in combination with the spleen focus forming virus (SFFV)/murine embryonic stem cell (MESV) hybrid vector SFbeta11-EGFP, high transduction rates for CD45+ (41.0 +/- 5.3%) and CD34+ (38.5 +/- 3.7%) cells prior to transplantation, as well as efficient human cell engraftment in NOD/SCID mice 4 weeks after transplantation (32.4 +/- 3.5%), was detected. Transgene expression was observed in B-lymphoid (15.9 +/- 2.0%), myeloid (36.5 +/- 3.5%) and CD34+ cells (10.1 +/- 1.5%). CONCLUSION: Our data show that CD34+ cells maintained in cytokines for multiple days may differentiate and loose their capacity to contribute to the haematological reconstitution of NOD/SCID mice. In addition, the SFFV/MESV hybrid vector SFbeta11-EGFP allows efficient transduction of and gene expression in haematopoietic progenitor cells.
Evaluation of different protocols for gene transfer into non-obese diabetes/severe combined immunodeficiency disease mouse repopulating cells.
阅读:4
作者:Ebeling Peter, Bach P, Sorg U, Schneider A, Trarbach T, Dilloo D, Hanenberg H, Niesert S, Seeber S, Moritz T, Flasshove M
| 期刊: | Journal of Cancer Research and Clinical Oncology | 影响因子: | 2.800 |
| 时间: | 2007 | 起止号: | 2007 Mar;133(3):199-209 |
| doi: | 10.1007/s00432-006-0158-9 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
