Leflunomide alleviates obesity via activation of the TAK1-AMPK pathway and induction of lipophagy

来氟米特通过激活 TAK1-AMPK 通路和诱导脂肪吞噬来缓解肥胖

阅读:7
作者:Xiaoyue Ji, Junhong Chen, Chaoying You, Jing Sun, Xiulong Xu

Abstract

Lipophagy is a subset of selective autophagy that specifically degrades lipid droplets and plays an important role in obesity. Leflunomide treatment in rheumatoid arthritis (RA) patients has been associated with weight loss and decreased blood glucose levels, which cannot be attributed to its known side effects. Our prior studies showed that A77 1726, the active metabolite of leflunomide, acts as an inhibitor of S6K1 to sensitize the insulin receptor and control hyperglycemia. Whether the anti-obesity effect of leflunomide is mediated by targeting S6K1 and its underlying mechanisms remain unclear. Here, we report that A77 1726 induced LC3 lipidation and increased the formation of autophagosomes and lipoautolysosomes in 3T3-L1 adipocytes by activating TGF-β-activated kinase 1 (TAK1), AMP-activated kinase (AMPK), and Unc-51 like autophagy-activated kinase 1 (ULK1). A77 1726 reduced the content of lipid droplets in 3T3-L1 adipocytes, which was blocked by bafilomycin or by beclin-1 knockdown. Similar observations were made in murine adipocytes differentiated from S6K1-/- embryonic fibroblasts (MEFs). Leflunomide treatment restricted bodyweight gains in ob/ob mice and reduced the visceral fat deposit and the size of adipocytes. Leflunomide treatment induced autophagy in adipose and liver tissues and reduced hepatic lipid contents. Consistently, S6K1 knockout increased the levels of LC3 lipidation in the liver, muscle, and fat of S6K-/- mice. Leflunomide treatment and S6K1 deficiency both induced TAK1, AMPK, and ULK1 phosphorylation in these tissues. These observations collectively suggest that leflunomide controls obesity in part by activating AMPK and inducing lipophagy. Our study provides insights into the mechanisms of leflunomide-mediated anti-obesity activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。