Chemical Gating of a Synthetic Tube-in-a-Tube Semiconductor.

阅读:4
作者:Ng Allen L, Chen Chien-Fu, Kwon Hyejin, Peng Zhiwei, Lee Cheng S, Wang YuHuang
A critical challenge to translating field effect transistors into biochemical sensor platforms is the requirement of a gate electrode, which imposes restrictions on sensor device architectures and results in added expense, poorer scalability, and electrical noise. Here we show that it is possible to eliminate the need of the physical gate electrode and dielectrics altogether using a synthetic tube-in-a-tube (Tube(∧)2) semiconductor. Composed of a semiconducting single-walled carbon nanotube nested in a charged, impermeable covalent functional shell, Tube(∧)2 allows the semiconducting conduction pathway to be modulated solely by surface functional groups in a chemically gated-all-around configuration. The removal of physical gates significantly simplifies the device architecture and enables photolithography-free, highly scalable fabrication of transistor sensors in nonconventional configurations that are otherwise impossible. We show that concomitant FET sensitivity and single-mismatch selectivity can be achieved with Tube(∧)2 even in a two-terminal, thin film transistor device configuration that is as simple as a chemiresistor. Miniaturized two-terminal field effect point sensors can also be fabricated, using a straightforward dice-and-dip procedure, for the detection of tuberculosis biomarkers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。