BACKGROUND: Recent advancements in spatially resolved transcriptomics (SRT) have opened up unprecedented opportunities to explore gene expression patterns within spatial contexts. Deciphering spatial domains is a critical task in spatial transcriptomic data analysis, aiding in the elucidation of tissue structural heterogeneity and biological functions. However, existing spatial domain detection methods ignore the consistency of expression patterns and spatial arrangements between spots, as well as the severe gene dropout phenomenon present in SRT data, resulting in suboptimal performance in identifying tissue spatial heterogeneity. RESULTS: In this paper, we introduce a novel framework, spatially regularized deep graph networks (SR-DGN), which integrates gene expression profiles with spatial information to learn spatially-consistent and informative spot representations. Specifically, SR-DGN employs graph attention networks (GAT) to adaptively aggregate gene expression information from neighboring spots, considering local expression patterns between spots. In addition, the spatial regularization constraint ensures the consistency of neighborhood relationships between physical and embedded spaces in an end-to-end manner. SR-DGN also employs cross-entropy (CE) loss to model gene expression states, effectively mitigating the impact of noisy gene dropouts. CONCLUSIONS: Experimental results demonstrate that SR-DGN outperforms state-of-the-art methods in spatial domain identification across SRT data from different sequencing platforms. Moreover, SR-DGN is capable of recovering known microanatomical structures, yielding clearer low-dimensional visualizations and more accurate spatial trajectory inferences.
Deciphering spatial domains from spatially resolved transcriptomics through spatially regularized deep graph networks.
阅读:4
作者:Zhang Daoliang, Yu Na, Sun Xue, Li Haoyang, Zhang Wenjing, Qiao Xu, Zhang Wei, Gao Rui
| 期刊: | BMC Genomics | 影响因子: | 3.700 |
| 时间: | 2024 | 起止号: | 2024 Nov 29; 25(1):1160 |
| doi: | 10.1186/s12864-024-11072-w | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
