The wave nature of the action potential.

阅读:9
作者:Galinsky Vitaly L, Frank Lawrence R
An alternative to the standard Hodgkin-Huxley model for the action potential in axons is presented. It is based on our recently developed theory of electric field wave propagation in anisotropic and inhomogeneous brain tissues, which has been shown to explain a broad range of observed coherent synchronous brain electrical processes. We demonstrate that this theory also explains the spiking behavior of single neurons, thereby bridging the gap between the fundamental element of brain electrical activity-the neuron-and large-scale coherent synchronous electrical activity. We demonstrate that our recently developed theory of electric field wave propagation in anisotropic and inhomogeneous brain tissues, which has been shown to explain a broad range of observed coherent synchronous brain electrical processes, also applies to the spiking behavior of single neurons, thus bridging the gap between the fundamental element of brain electrical activity (the neuron) and large-scale coherent synchronous electrical activity. Our analysis indicates that a non-linear system with several small parameters can mathematically describe the membrane interface of the axonal cellular system. This enables the rigorous derivation of an accurate yet simpler non-linear model through the formal small-parameter expansion. The resulting action potential model exhibits a smooth, continuous transition from the linear wave oscillatory regime to the non-linear spiking regime, as well as a critical transition to a non-oscillatory regime. These transitions occur with changes in the criticality parameter and include several different bifurcation types, representative of the various experimentally detected neuron types. This new theory addresses the limitations of the Hodgkin-Huxley model, including its inability to explain extracellular spiking, efficient brain synchronization, saltatory conduction along myelinated axons, and various other observed coherent macroscopic brain electrical phenomena. We also demonstrate that our approach recovers the standard cable axon theory, utilizing the relatively simple assumptions of piece-wise homogeneity and isotropy. However, the diffusion process described by the cable equation is not capable of supporting action potential propagation across a wide range of experimentally reported axon parameters.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。